Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35054904

RESUMO

Radioactive isotopes are used as drugs or contrast agents in the medical field after being conjugated with chelates such as DOTA, NOTA, DTPA, TETA, CyDTA, TRITA, and DPDP. The N-terminal sequence of human serum albumin (HSA) is known as a metal binding site, such as for Co2+, Cu2+, and Ni2+. For this study, we designed and synthesized wAlb12 peptide from the N-terminal region of HSA, which can bind to cobalt, to develop a peptide-based chelate. The wAlb12 with a random coil structure tightly binds to the Co(II) ion. Moreover, the binding property of wAlb12 toward Co(II) was confirmed using various spectroscopic experiments. To identify the binding site of wAlb12, the analogs were synthesized by alanine scanning mutagenesis. Among them, H3A and Ac-wAlb12 did not bind to Co(II). The analysis of the binding regions confirmed that the His3 and α-amino group of the N-terminal region are important for Co(II) binding. The wAlb12 bound to Co(II) with Kd of 75 µM determined by isothermal titration calorimetry when analyzed by a single-site binding model. For the use of wAlb12 as a chelate in humans, its cytotoxicity and stability were investigated. Trypsin stability showed that the wAlb12 - Co(II) complex was more stable than wAlb12 alone. Furthermore, the cell viability analysis showed wAlb12 and wAlb12 + Co(II) to be non-toxic to the Raw 264.7 and HEK 293T cell lines. Therefore, a hot radioactive isotope such as cobalt-57 will have the same effect as a stable isotope cobalt. Accordingly, we expect wAlb12 to be used as a peptide chelate that binds with radioactive isotopes.


Assuntos
Quelantes/metabolismo , Cobalto/metabolismo , Peptídeos/metabolismo , Albumina Sérica Humana/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Sobrevivência Celular , Quelantes/química , Cromatografia Líquida de Alta Pressão , Cobalto/química , Humanos , Cinética , Camundongos , Peptídeos/química , Ligação Proteica , Estabilidade Proteica , Células RAW 264.7 , Análise Espectral , Relação Estrutura-Atividade
2.
J Microbiol ; 45(2): 113-21, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17483795

RESUMO

The bacterial diversity inherent to the biofilm community structure of a modified rotating biological contactor wastewater treatment process, referred to as the Rotating Activated Bacillus Contactor (RABC) process, was characterized in this study, via both culture-dependent and culture-independent methods. On the basis of culture-dependent methods, Bacillus sp. were found to exist in large numbers on the biofilm (6.5% of the heterotrophic bacteria) and the microbial composition of the biofilms was quite simple. Only three phyla were identified-namely, the Proteobacteria, the Actinobacteria (High G+C Gram-positive bacteria), and the Firmicutes (Low G+C Gram-positive bacteria). The culture-independent partial 16S rDNA sequence analysis revealed a considerably more diverse microbial composition within the biofilms. A total of eight phyla were recovered in this case, three of which were major groups: the Firmicutes (43.9%), the Proteobacteria (28.6%), and the Bacteroidetes (17.6%). The remaining five phyla were minor groups: the Planctomycetes (4.4%), the Chlorobi (2.2%), the Actinobacteria (1.1%), the Nitrospirae (1.1%), and the Verrucomicrobia (1.1%). The two most abundant genera detected were the endospore-forming bacteria (31.8%), Clostridium and Bacillus, both of which are members of the Firmicutes phylum. This finding indicates that these endospore-forming bacteria successfully colonized and dominated the RABC process biofilms. Many of the colonies or clones recovered from the biofilms evidenced significantly high homology in the 16S rDNA sequences of bacteria stored in databases associated with advanced wastewater treatment capabilities, including nitrification and denitrification, phosphorus accumulation, the removal of volatile odors, and the removal of chlorohydrocarbons or heavy metals. The microbial community structures observed in the biofilms were found to correlate nicely with the enhanced performance of advanced wastewater treatment protocols.


Assuntos
Bacillus/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Bactérias Formadoras de Endosporo/crescimento & desenvolvimento , Esgotos/microbiologia , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/crescimento & desenvolvimento , Bacillus/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Bactérias Formadoras de Endosporo/classificação , Bactérias Formadoras de Endosporo/genética , Dados de Sequência Molecular , Filogenia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...